10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015

Symmetry protected topological phases in quantum spin systems

NIMS \rightarrow U. Tokyo Shintaro Takayoshi

Collaboration with

A. Tanaka (NIMS) and K. Totsuka (YITP)

Phys. Rev. B **91**, 155136 (2015)

Determination of phase diagrams is an important task in many fields of physics.

What are criteria for the classification of phases? e.g. Landau theory (symmetry breaking)

(Intrinsic) topological order

A phase which cannot be characterized by (local) order parameters but nontrivial

- Fractionalization of excitation (anyons)
- Ground state degeneracy depending on topology of the manifold on which the system resides
- E.g., Fractional quantum Hall (FQH) effect Gapped quantum spin liquid (Toric code, Quantum dimer model, etc.)

v=1/3 FQH state on an orientable surface
 3^g-fold degenerate ground states
 (g: genus)

Symmetry protected topological phase

• Gapped systems

```
Long-range entangled state ••• Intrinsic topological order
```

Short-range entangled state

Without any symmetry

Trivial (direct product) state

 Short Long range entangled state can be nontrivial if some symmetry is imposed.

➤Local order parameter → Ginzburg-Landau theory

➢No Local order parameter → Symmetry protected topological (SPT) phase

<u>Typical SPT phase — Haldane phase</u>

(1+1) D Heisenberg antiferromagnet (Spin-S)

$$\mathcal{H} = \sum_{j} J \boldsymbol{S}_{j} \cdot \boldsymbol{S}_{j+1} (J > 0)$$

Effective field theory - O(3) nonlinear sigma model

$$S[\boldsymbol{n}] = \frac{1}{2g} \int d\tau dx \left\{ \frac{1}{v} (\partial_{\tau} \boldsymbol{n})^2 + v (\partial_x \boldsymbol{n})^2 \right\} + \frac{i\theta}{4\pi} \int d\tau dx \boldsymbol{n} \cdot \partial_{\tau} \boldsymbol{n} \times \partial_x \boldsymbol{n}$$
$$|\boldsymbol{n}| = 1 \qquad \boldsymbol{S}_j / S \sim (-1)^j \boldsymbol{n}(x) + (a/S) \boldsymbol{l}(x) \qquad g = 2/S \quad v = 2JS$$

Haldane conjecture Haldane, 1983

 $\theta = 2\pi S \equiv 0 \mod 2\pi$ Integer spin (gapped)

 $\theta \equiv \pi \mod 2\pi$ Half-odd integer spin (gapless, critical)

AKLT state

Q: Are "Gapped phases" all the same?

S=1,2,3,...

<u>Typical SPT phase — Haldane phase</u>

A: NO
$$\mathcal{H} = \sum_{j} J S_{j} \cdot S_{j+1} (J > 0)$$

Integer spin is additionally classified into odd-integer (SPT) and even-integer (Trivial)

Pollmann-Berg-Turner-Oshikawa, 2010, 2012

S=1 (Haldane phase) ground state is protected by

- (A) π -rotation about spin x,y,z-axis ($Z_2 \times Z_2$)
- (B) Time-reversal symmetry
- (C) Link-center inversion symmetry

S=2 ground state is smoothly deformed into trivial (direct product) state.

<u>Phase diagram for S=1 and S=2</u>

$$\mathcal{H} = J \sum_{j} (S_{j}^{x} S_{j+1}^{x} + S_{j}^{y} S_{j+1}^{y} + \Delta S_{j}^{z} S_{j+1}^{z}) + D \sum_{j} (S_{j}^{z})^{2}$$

Large-D (trivial) phase $|000\cdots\rangle$ (S^z-basis)

S=2 S=1 D 4 LD 3.0 D 2 ID Large-D 2.0 Neel XY1 2 -2. Δ 4 1.0-Haldane Ferro N Y2 $0.0 \ 0.0$ 2.0 3.0 1.0Δ Chen et al., 2003 Tonegawa et al., 2011

Magnetization plateau

Region where *M* is unchanged with increasing *H* in magnetization curves

Oshikawa-Yamanaka-Affleck condition

Oshikawa-Yamanaka-Affleck, 1997

Magnetization plateau

Magnetization plateaus are gapped states.

Q: Magnetization plateau can be considered as a SPT phase?

- 1. Field theory
- 2. Matrix product state (MPS) representation
- 3. Numerical calculations

Field theory of magnetization plateau

Tanaka-Totsuka-Hu, 2009

Model
$$\mathcal{H} = J \sum_{j} S_{j} \cdot S_{j+1} + D \sum_{j} (S_{j}^{z})^{2} - H \sum_{j} S_{j}^{z} \quad J > 0$$

Canted spin configuration

$$\boldsymbol{S}_{j}(\tau) = S \begin{pmatrix} (-1)^{j} \cos \phi_{j}(\tau) \sin \theta_{0} \\ (-1)^{j} \sin \phi_{j}(\tau) \sin \theta_{0} \\ \cos \theta_{0} \end{pmatrix}$$

$$m = S \cos \theta_0 \quad \cos \theta_0 = H/(2S(D+2J))$$

Continuum
$$\mathcal{S} = \mathcal{S}_{\rm kin} + \mathcal{S}_{\rm BP}^{\rm tot}, \quad \mathcal{S}_{\rm kin} = \int d\tau \mathcal{H} \stackrel{\rm limit}{\to} \int dx d\tau \frac{\zeta}{2} \Big\{ \frac{1}{v^2} (\partial_\tau \phi)^2 + (\partial_x \phi)^2 \Big\}$$
$$\zeta = aJS^2 \Big(1 - \frac{H^2}{4S^2(D+2J)^2} \Big), \quad v = Ja \sqrt{\frac{4S^2(D+2J)^2 - H^2}{2J(D+2J)}}$$

Berry phase term

$$\mathcal{S}_{\rm BP}^{\rm tot} = \sum_{j} iS(1 - \cos\theta_0) \int d\tau \partial_\tau \phi_j = \sum_{j} i(S - m) \int d\tau \partial_\tau \phi_j$$

Berry phase term

$$\mathcal{S}_{\rm BP}^{\rm tot} = \sum_{j} (-1)^{j} \mathcal{S}_{{\rm BP},j} + \sum_{j: {\rm odd}} 2i(S-m) \int d\tau \partial_{\tau} \phi_{j} \qquad \qquad \mathcal{S}_{{\rm BP},j} = i(S-m) \int d\tau \partial_{\tau} \phi_{j}$$

Staggered part Uniform part

Uniform part
$$\sum_{j:\text{odd}} 2i(S-m) \int d\tau \partial_{\tau} \phi_j \rightarrow i \int dx d\tau \frac{S-m}{a} \partial_{\tau} \phi$$

- $S-m \notin \mathbb{Z}$: Gapless theory
- $S-m\in\mathbb{Z}$: Magnetization plateau

Oshikawa-Yamanaka-Affleck, 1997 Tanaka-Totsuka-Hu, 2009

Staggered part

$$\mathcal{S}_{\rm BP}^{\rm tot} = \sum_{j} (-1)^{j} (S-m) \int d\tau \partial_{\tau} \phi_{j}$$
$$= i2\pi (S-m) \sum_{\substack{\text{odd}\\\text{column}}} (\text{spacetime vorticity of } \phi).$$

Introduction of horizontal arrows

Berry phase term

$$\mathcal{S}_{\rm BP}^{\rm tot} = i2\pi(S\!-\!m)\sum_{\substack{\rm odd\\ \rm column}} ({\rm spacetime \ vorticity\ of\ }\phi)$$

Continuum

$$\stackrel{\text{limit}}{\rightarrow} i \frac{S-m}{2} \int d\tau dx (\partial_{\tau} \partial_{x} - \partial_{x} \partial_{\tau}) \phi(\tau, x) \qquad \mathbf{N}_{\text{planar}}(\tau, x) \equiv \begin{pmatrix} \cos \phi(\tau, x) \\ \sin \phi(\tau, x) \\ 0 \end{pmatrix}$$

$$CP^{1} \text{ representation } N^{a} = \mathbf{z}^{\dagger} \sigma^{a} \mathbf{z} \qquad \mathbf{z} \equiv \begin{pmatrix} 1/\sqrt{2} \\ e^{i\phi(\tau, x)}/\sqrt{2} \end{pmatrix}$$

$$a_{\mu} \equiv -i\mathbf{z}^{\dagger} \partial_{\mu} \mathbf{z} = \partial_{\mu} \phi/2(\mu = \tau, x)$$

$$\mathcal{S}_{\rm BP}^{\rm tot} = i(S-m) \int d\tau dx (\partial_{\tau} a_x - \partial_x a_{\tau})$$

cf. θ -term of O(3) nonlinear sigma model

$$\mathcal{S}_{\theta} = i\frac{\theta}{2\pi} \int d\tau dx (\partial_{\tau} a_x - \partial_x a_{\tau}) \quad \longleftarrow \quad i\frac{\theta}{4\pi} \int d\tau dx \epsilon^{abc} N_a \partial_{\tau} N_b \partial_x N_c$$

Effective vacuum angle $\theta_{\text{eff}} = 2\pi(S-m)$

Groundstate wave functional

Xu-Senthil, 2013

$$\mathcal{S} = \int d\tau dx \Big[\frac{1}{2g} (\partial_{\mu} \phi)^2 + i(S - m) (\partial_{\tau} a_x - \partial_x a_{\tau}) \Big]$$

 $^{\searrow}$ CP¹ gauge fields $a_{\mu} \equiv \partial_{\mu} \phi/2(\mu= au,x)$

Strong coupling limit $g \to \infty$

 $\Psi[\mathbf{N}(x)]$: probability amplitude of the configuration $\{\mathbf{N}(x)\}$

Path integral formalism

SPT breaking perturbation

Staggered field introduces z-component change δm i.e. Modification $S - m \rightarrow S - m - \delta m$

$$\mathcal{S}_{\rm BP}^{\rm tot} = i(S - m - \delta m) \int d\tau dx (\partial_\tau a_x - \partial_x a_\tau)$$

 $\Psi[\mathbf{N}(x)] \propto e^{-i(S-m-\delta m)\pi W}$

S-m = even and odd are continuouslyconnected by changing δm . \rightarrow Need to check that the gap does not close. (below)

Protected by link-center inversion symmetry

Dual boson-vortex theory

$$\mathcal{S} = \int d\tau dx \Big[\frac{\zeta}{2} \Big\{ \frac{1}{v^2} (\partial_\tau \phi)^2 + (\partial_x \phi)^2 \Big\} + i(S-m)(\partial_\tau a_x - \partial_x a_\tau) \Big]$$

$$\begin{split} \mathcal{L} &= \frac{1}{2g} (\partial_{\mu} \phi)^2 + i\pi (S-m) \rho_{\rm v} \\ \rho_{\rm v} &\equiv (\partial_{\tau} \partial_x - \partial_x \partial_{\tau}) \phi / (2\pi) : \text{Density of spacetime vortices} \end{split}$$

Hubbard-Stratonovich transformation

$$(\partial_{\mu}\phi)^{2}/(2g) \rightarrow (g/2)J_{\mu}^{2} + iJ_{\mu}\partial_{\mu}\phi$$

 $\phi = \phi_{\rm r} + \phi_{\rm v} \qquad (\partial_{\tau}\partial_{x} - \partial_{x}\partial_{\tau})\phi_{\rm r} = 0 \,: \text{Regular part}$
 $(\partial_{\tau}\partial_{x} - \partial_{x}\partial_{\tau})\phi_{\rm v} \neq 0 \,: \text{Vortex part}$

Integration about $\phi_{\rm r} \rightarrow$ Delta function $\propto \delta(\partial_{\mu}J_{\mu})$ $J_{\mu} = \epsilon_{\mu\nu}\partial_{\nu}\varphi/2\pi \qquad \varphi$: Vortex-free scalar field $\mathcal{L} = \frac{g}{8\pi^2}(\partial_{\mu}\varphi)^2 + i\pi(S - m + \varphi/\pi)\rho_{\rm v}$

Dual boson-vortex theory

$$\mathcal{L} = \frac{g}{8\pi^2} (\partial_\mu \varphi)^2 + i\pi (S - m + \varphi/\pi) \rho_{\rm v}$$

Small fugacity expansion : Restrict the vorticity within $\rho_{\rm v}=\pm 1$

 $z = e^{-\mu}$ μ : creation energy of a vortex

Lagrangian density for the vortex gas

$$\mathcal{L} = \frac{g}{2} (\partial_{\mu} \varphi)^2 + 2z \cos\left(\pi (S - m) + \varphi\right)$$

In a magnetization plateau,

$$\cos\left(\pi(S-m)+\varphi\right) = (-1)^{S-m}\cos\varphi$$

Final form of the vortex field theory :

$$\mathcal{L}_{\text{dual}} = \frac{g}{2} (\partial_{\mu} \varphi)^2 + (-1)^{S-m} 2z \cos \varphi$$

sine-Gordon theory

Parity of S-m changes the phase locking point of φ

Dual boson-vortex theory

$$\mathcal{L} = \frac{g}{8\pi^2} (\partial_\mu \varphi)^2 + i\pi (S - m + \varphi/\pi) \rho_{\rm v}$$

Small fugacity expansion : Restrict the vorticity within $\rho_{\rm v}=\pm 1$

 $z = e^{-\mu}$ μ : creation energy of a vortex

Lagrangian density for the vortex gas

$$\mathcal{L} = \frac{g}{2} (\partial_{\mu} \varphi)^{2} + 2z \cos \left(\pi (S - m) + \varphi \right)$$

In a magnetization plateau,
$$\cos \left(\pi (S - m) + \varphi \right) = (-1)^{S - m} \cos \varphi$$

If staggered field is introduced
$$S - m \rightarrow S - m - \delta m$$

$$\mathcal{L} = \frac{g}{2} (\partial_{\mu} \varphi)^{2} + 2z \cos \left(\varphi + \pi (S - m - \delta m) \right)$$

Final form of the vortex field theory :

$$\mathcal{L}_{\text{dual}} = \frac{g}{2} (\partial_{\mu} \varphi)^2 + (-1)^{S-m} 2z \cos \varphi$$

Parity of S-m changes the phase locking point of φ

Phase locking point change continuously

VBS picture for m=1/2 plateau in S=3/2

Schwinger boson representation

$$\Psi\rangle = \prod_{j} P_{j}a_{j}^{\dagger}(a_{j}^{\dagger}b_{j+1}^{\dagger} - b_{j}^{\dagger}a_{j+1}^{\dagger})\bigotimes_{j}|0\rangle_{j}$$
up down

 P_j : Projection operator

 $(a_j^{\dagger})^3 |0\rangle_j \to \sqrt{6} |S^z = 3/2\rangle_j$

 $(a_j^\dagger)^2 b_j^\dagger |0\rangle_j \to \sqrt{2} |S^z = 1/2\rangle_j$

$$a_j^{\dagger}(b_j^{\dagger})^2 |0\rangle_j \rightarrow \sqrt{2} |S^z = -1/2\rangle_j$$

Matrix product state (MPS)

$$\begin{split} |\Psi\rangle &= \sum_{S_j^z = -3/2}^{3/2} \dots \Lambda \Gamma[S_{j-1}^z] \Lambda \Gamma[S_j^z] \Lambda \Gamma[S_{j+1}^z] \Lambda \dots \bigotimes_j |S_j^z\rangle \\ &\Gamma[3/2] = (1 + \sqrt{3})^{-1/2} \begin{pmatrix} 0 & 0 \\ -\sqrt{2} \, 3^{1/4} & 0 \end{pmatrix} \\ &\Gamma[1/2] = (1 + \sqrt{3})^{-1/2} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \\ &\Gamma[-1/2] = (1 + \sqrt{3})^{-1/2} \begin{pmatrix} 0 & \sqrt{2} \, 3^{1/4} \\ 0 & 0 \end{pmatrix} \\ &\Gamma[-3/2] = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\Lambda = \begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \end{split}$$

$$|\Psi\rangle = \sum_{S_j^z = -3/2}^{3/2} \dots \Lambda \Gamma[S_{j-1}^z] \Lambda \Gamma[S_j^z] \Lambda \Gamma[S_{j+1}^z] \Lambda \dots \bigotimes_j |S_j^z\rangle$$

Degrees of freedom of MPS

Applying a phase factor: $e^{i\theta}$

Unitary transformation: $\Lambda\Gamma \rightarrow U^{\dagger}(\Lambda\Gamma)U$

"Projective representation"

Link-center inversion \mathcal{I} acts on MPS as $\Gamma^{\mathrm{T}} = e^{i\theta_{\mathcal{I}}} U_{\mathcal{I}}^{\dagger} \Gamma U_{\mathcal{I}}$ $(A_1 A_2 \cdots A_n)^{\mathrm{T}} = A_n^{\mathrm{T}} \cdots A_2^{\mathrm{T}} A_1^{\mathrm{T}}$

 $\Gamma^{\mathrm{T}} = e^{i\theta_{\mathcal{I}}} U_{\mathcal{I}}^{\dagger} \Gamma U_{\mathcal{I}}$ $\Gamma = e^{i\theta_{\mathcal{I}}} U_{\mathcal{I}}^{\mathrm{T}} \Gamma^{\mathrm{T}} U_{\mathcal{I}}^{*}$ $\Gamma = e^{i\theta_{\mathcal{I}}} U_{\mathcal{I}}^{\mathrm{T}} \Gamma^{\mathrm{T}} U_{\mathcal{I}}^{*}$ $e^{2i\theta_{\mathcal{I}}} = 1$

$$U_{\mathcal{I}}^* U_{\mathcal{I}} = e^{i\phi} E \to U_{\mathcal{I}} = e^{i\phi} U_{\mathcal{I}}^{\mathrm{T}} \to U_{\mathcal{I}} = \pm U_{\mathcal{I}}^{\mathrm{T}}$$

Matrix product state (MPS)

$$\begin{split} \Psi \rangle &= \sum_{S_j^z = -3/2}^{3/2} \dots \Lambda \Gamma[S_{j-1}^z] \Lambda \Gamma[S_j^z] \Lambda \Gamma[S_{j+1}^z] \Lambda \dots \bigotimes_j |S_j^z\rangle \\ \Gamma[3/2] &= (1 + \sqrt{3})^{-1/2} \begin{pmatrix} 0 & 0 \\ -\sqrt{2} \, 3^{1/4} & 0 \end{pmatrix} \qquad \Gamma[1/2] = (1 + \sqrt{3})^{-1/2} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & -\sqrt{2} \end{pmatrix} \\ \Gamma[-1/2] &= (1 + \sqrt{3})^{-1/2} \begin{pmatrix} 0 & \sqrt{2} \, 3^{1/4} \\ 0 & 0 \end{pmatrix} \qquad \Gamma[-3/2] = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \Lambda &= \begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} \end{pmatrix} \end{split}$$

 $U_{\mathcal{I}} = -U_{\mathcal{I}}^{\mathrm{T}}$: Nontrivial

 $\Gamma^{\mathrm{T}} = e^{i\theta_{\mathcal{I}}} U_{\mathcal{I}}^{\dagger} \Gamma U_{\mathcal{I}}$

We can find
$$U_{\mathcal{I}} = i\sigma_y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Entanglement spectrum

Schmidt decomposition $|\Psi\rangle = \sum_{\alpha} \lambda_{\alpha} |\Psi_A\rangle_{\alpha} \otimes |\Psi_B\rangle_{\alpha}$

 $\rho_{\rm A} \equiv {\rm Tr}_{\rm B} |\Psi\rangle \langle \Psi| = \sum_{\alpha} \lambda_{\alpha}^2 |\Psi_{\rm A}\rangle_{\alpha \alpha} \langle \Psi_{\rm A}| \quad : \text{Density matrix}$ $\begin{pmatrix} \lambda_1 & 0 & 0 \end{pmatrix}$

Entanglement spectrum (ES)

$$\{-\ln(\lambda_{\alpha}^{2})\} \quad (\alpha = 1, \dots, \chi) \qquad \Lambda =$$

$$\begin{pmatrix} \lambda_1 & 0 & 0 & \\ 0 & \lambda_2 & 0 & \\ 0 & 0 & \lambda_3 & \\ & & & \ddots \end{pmatrix}$$

 $U_{\mathcal{I}}$: block diagonal about singular values (subspace index k)

$$U_{\mathcal{I}} = -U_{\mathcal{I}}^{\mathrm{T}}$$

, dimension of each block

$$\det(U_{\mathcal{I},k}) = \det(U_{\mathcal{I},k}^{\mathrm{T}}) = \det(-U_{\mathcal{I},k}) = (-1)^{d_k} \det(U_{\mathcal{I},k})$$

 d_k should be even \rightarrow ES is two-fold degenerate

Numerical calculations in FFAF chains

Studying the model $\mathcal{H} = J \sum_{j} S_{j} \cdot S_{j+1} + D \sum_{j} (S_{j}^{z})^{2} - H \sum_{j} S_{j}^{z}$ is preferable.

However, it is difficult to investigate plateaux in this model (very small region).

It is easier to find magnetization plateaux in ferro-ferro-antiferromagnetic (FFAF) chains.

Hida, 1994

Candidate material : Cu₃(P₂O₆OH)₂

Numerical calculations in FFAF chains

- Infinite-time evolving block decimation (iTEBD).
- Magnetization curves and entanglement spectra.

<u>Conclusion</u>

Magnetization plateau states in 1D antiferromagnets are in an SPT phase protected by link-inversion symmetry if S-m = odd integer.

Phys. Rev. B 91, 155136 (2015)

- 1. Field theories
 - Nonlinear sigma model with topological term
 - Wave functional by path integral
- 2. Matrix product state (MPS) representation
- 3. Numerical calculations
 - Structure of entanglement spectrum